IRSp53 accumulates at the postsynaptic density under excitatory conditions
نویسندگان
چکیده
IRSp53 (BAIAP2) is an abundant protein at the postsynaptic density (PSD) that binds to major PSD scaffolds, PSD-95 and Shanks, as well as to F-actin. The distribution of IRSp53 at the PSD in cultured hippocampal neurons was examined under basal and excitatory conditions by immuno-electron microscopy. Under basal conditions, label for IRSp53 is concentrated at the PSD. Upon depolarization by application of a medium containing 90 mM K+, the intensity of IRSp53 label at the PSD increased by 36±7%. Application of NMDA (50 μM) yielded 53±1% increase in the intensity of IRSp53 label at the PSD compared to controls treated with APV, an NMDA antagonist. The accumulation of IRSp53 label upon application of high K+ or NMDA was prominent at the deeper region of the PSD (the PSD pallium, lying 40-120 nm from the postsynaptic plasma membrane). IRSp53 molecules that accumulate at the distal region of the PSD pallium under excitatory conditions are too far from the plasma membrane to fulfill the generally recognized role of the protein as an effector of membrane-bound small GTPases. Instead, these IRSp53 molecules may have a structural role organizing the Shank scaffold and/or linking the PSD to the actin cytoskeleton.
منابع مشابه
IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders
IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines....
متن کاملNMDA receptor-dependent synaptic translocation of insulin receptor substrate p53 via protein kinase C signaling.
The activity-dependent remodeling of postsynaptic structure is a fundamental process underlying learning and memory. Insulin receptor substrate p53 (IRSp53), a key player in cytoskeletal dynamics, is enriched in the postsynaptic density (PSD) fraction, but its significance in synaptic functions remains unclear. We report here that IRSp53 is accumulated rapidly at the postsynaptic sites of cultu...
متن کاملEnhanced NMDA receptor-mediated synaptic transmission, enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53.
IRSp53 is an adaptor protein that acts downstream of Rac and Cdc42 small GTPases and is implicated in the regulation of membrane deformation and actin filament assembly. In neurons, IRSp53 is an abundant postsynaptic protein and regulates actin-rich dendritic spines; however, its in vivo functions have not been explored. We characterized transgenic mice deficient of IRSp53 expression. Unexpecte...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملThe insulin receptor substrate of 53 kDa (IRSp53) limits hippocampal synaptic plasticity.
IRSp53 is an essential intermediate between the activation of Rac and Cdc42 GTPases and the formation of cellular protrusions; it affects cell shape by coupling membrane-deforming activity with the actin cytoskeleton. IRSp53 is highly expressed in neurons where it is also an abundant component of the postsynaptic density (PSD). Here we analyze the physiological function of this protein in the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017